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Abstract: - We consider a problem of detecting a random spatially distributed signal source by an array of sen-
sors based on the generalized approach to signal processing (GASP) in noise. We derive some generalized rece-
iver (GR) structures under several assumptions on the available statistics. The GR performance is evaluated and 
the effect of source angular spread is investigated. We notice the degrees of freedom of detection statistics dist-
ributions depend on both the signal angular spread and the number of data snapshots. At the high signal-to-noi-
se ratio and with small degrees of freedom, increasing in angular spread improves the detection performance. 
With large degrees of freedom the increasing in angular spread reduces the detection performance. A compari-
son between GR and conventional beamformer is carried out by computer simulations. The results indicate a 
superiority of GR implementation as the angular spread becomes large over the conventional beamformer dete-
ctor. 

Key-Words: - Generalized detector, distributed source, sensor array, generalized likelihood ratio test, adaptive 
coherence estimator detector, clutter, jamming. 
 
1 Introduction 
In the majority of cases, a large class of modern ar-
ray processing techniques has been designed for po-
int sources, i.e. spatially discrete sources of electro-
magnetic energy. In many applications, the transmit-
ter is best modelled as a distributed, rather than a 
point source. The distributed sources appear to have 
certain angular spread with a mean direction of arri-
val (DOA). The point source model is only an app-
roximation of the practical situation when there is a 
large distance between the source and the receiver 
array. 
     The principal mechanism to make the source ap-
pear to be distributed in a space is diffuse (irresolv-
able) and specular (resolvable) multipath caused by 
scattering of the propagation waves. For example, 
experimental results obtained in urban wireless co-
mmunications reported significant angular scattering 
distributions due to local scattering and reflection 
from mobile stations [1]–[3] and base stations[4], 
[5]. The characterization of the power azimuth spe-
ctrum shows that angular spreads as large as 25 ha-
ve been observed. The amount of angular spread is 
highly dependent on the scattering around the mobi-
le, the height of the base station, and the distance 
between the base station and the mobile station.Se-
condary, but equally important, mechanism is tran-

smitter motion. If the source moves significantly du-
ring the observation interval or coherent integration 
time, it will appear to be distributed rather that disc-
rete. 
     Angular spread has a significant impact on any 
array processing algorithms [6],i.e. the signal-to-no- 
ise ratio (SNR) gain of the array is reduced as the 
angular spread is increased [7], causing possible pe-
rformance degradation. In passive array signal pro-
cessing area, the problems under study concern the 
extraction of information from measurements using 
an array of radar sensors. Given the observations of 
the radar sensor outputs, the objective is to estimate 
the unknown parameters associated with the wave-
forms or target return signals corrupted by the noise. 
     We start with a simple and computationally effi-
cient detection scheme. If the “noise only” hypothe-
sis is rejected, other algorithms are used to estimate 
the number of the spatially distributed sources and 
their unknown parameters, such as radar range and 
bearing. Prior work on distributed sources focuses 
primarily on source localization and DOA estimati-
on [8]–[11]. Estimation of the number of spatially 
distributed sources has also been studied in [8].  
     Subspace detectors have been studied in [12], 
[13] for the cases where the spatially distributed sig-
nal lies in a deterministic subspace. The case of de-
tecting the Gaussian signals with a low-rank covari-
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ance matrix and matched subspace detectors have 
been developed based on the generalized likelihood 
ratio test (GLRT). In both cases, the subspace in 
which the signals lie is assumed to be known. In 
other words, the dimension and rank of the signal 
subspace are assumed to be known a priori. This as-
sumption does not hold in practical situations. The 
rank, orientation, and strength of the signal subspace 
vary along with the signal angular spread, DOA, and 
the energy distribution function. In this case, the un-
known parameters may be estimated based on the 
maximum likelihood principle. 
     In the present paper, we develop the generalized 
receiver (GR) constructed based on the generalized 
approach to signal processing (GASP) in noise [14] 
–[19] for spatially distributed signal sources and stu-
dy the GR performance depending on the angular 
spread. The idea to employ the generalized receiver 
(GR) for the radar sensor array has been triggered 
by the purpose to improve the detection performan-
ce of radar sensor systems at the low SNR. The GR 
can be described as a combination of the optimal de-
tector in the Neyman-Pearson (NP) criterion sense 
and energy detector (ED) [14]–[16]. The main func-
tion of GR ED is to detect a signal and the main fun-
ction of the GR NP is to confirm a detection of the 
searched signal and to define the detected signal pa-
rameters as discussed in detail in [16, Chapter 7, pp. 
685–692]. 
     A great difference between the GR ED and con-
ventional ED is a presence of additional linear syst-
em, for example, the bandpass filter, at the GR inp-
ut. This bandpass filter can be considered as the sou-
rce of additional (reference) noise which does not 
contain the target return signal from spatially distri-
buted signal source. The GR allows us to formulate 
a decision statistics about the target return signal 
presence or absence based on definition of the joint-
ly sufficient statistics of the mean and variance of 
the likelihood function [16, Chapter 3] while the op-
timal detectors of classical and modern detection 
theories make a decision about the target return sig-
nal presence or absence based on definition of the 
mean of the likelihood function, only, and the con-
ventional ED employed by radar sensor array sys-
tem defines a decision statistics with respect to the 
target return signal presence or absence based on 
determination of the variance of the likelihood fun-
ction only. Thus, an implementation of GR in radar 
sensor array systems allows us to extract more infor-
mation from the likelihood function and make a mo-
re accurate decision about the target return signal 
presence or absence in comparison, for example, 
with the matched filter (MF) or ED.    

     Theoretically, the GR can be applied to detect 
any target return signal, i.e. the signal with known 
or unknown, deterministic or random parameters. 
The GR implementation in radar and wireless com-
munication is discussed in [19] and [20]–[25] and 
[19], respectively. The signal detection performance 
improvement using GR in radar sensor system is in-
vestigated in [26]–[31]. The first attempt to investi-
gate the GR employment in cognitive radio systems 
(CR) has been discussed in [32]. 
     In the present paper, we first look at the case of 
known parameters. In this case, the GR can be app-
roximated as a subspace beamformer. The detection 
performance depends on the detection statistic dist-
ribution and the radar sensor SNR at the GR output. 
The degrees of freedom (DOF) of the detection sta-
tistics are determined by the angular spread and the 
number of data snapshots. If we fix the number of 
data snapshots, we show that increasing in angular 
spread reduces the mean of the detection statistics 
that degrades the detection performance, and at the 
same time reduces its variance improving the detec-
tion performance. 
     Within a certain range of DOF, the detection per-
formance is improved with increasing in the angular 
spread, up to a point, and then is degraded slowly. 
We consider the case when the various parameters, 
such as the signal direction, angular spread, power, 
and noise power are unknown. We derive the GLRT 
GR and evaluate its performance by computer simu-
lation. We demonstrate that the GLRT GR has a sig-
nificant performance advantage compared with con-
ventional beamformers of modern detection theory 
as the angular spread becomes large. 
     The reminder of this paper is organized as foll-
ows. Section II presents a brief description of the 
general GR flowchart and the main functioning pri-
nciples and decision statistics obtained at the GR 
output. The main statements of signal model, the 
brief description of signal subspace, and detection 
problem are delivered in Section III. Several types 
of the GR beamformers with various set of unknown 
parameters are discussed in Section IV. Section V 
introduces the performance analysis when the para-
meters are known. Numerical results obtained under 
simulation are presented and discussed in Section 
VI. Finally, the conclusion remarks are made in Sec-
tion VII.  

2 Conventional GR 
As we mentioned before, the GR is constructed in 
accordance with GASP in noise [14]–[16]. The 
GASP introduces an additional noise source that do-
es not carry any information about the incoming tar-
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get return signal with the purpose to improve the si-
gnal processing system performance. This additional 
noise can be considered as the reference noise with-
out any information about the signal to be detected. 
The jointly sufficient statistics of the mean and vari-
ance of the likelihood function is obtained under 
GASP employment, while the classical and modern 
signal processing theories can deliver only a suffici-
ent statistics of the mean or variance of the likeliho-
od function. Thus, GASP implementation allows us 
to obtain more information about the target return 
signal incoming at the GR input. Owing to this fact, 

the detectors constructed on the GASP technology 
are able to improve the signal detection performance 
in comparison with other conventional detectors. 
     The GR consists of three channels (see Fig. 1): 
the GR correlation detector channel (GR CD) – the 
preliminary filter (PF), the multipliers 1 and 2, the 
model signal generator (MSG); the GD autocorrela-
tion channel (GR ED) – the PF, the additional filter 
(AF), the multipliers 3 and 4, the summator 1; and 
the GR compensation channel (GR CC) – the sum-
mators 2 and 3, the accumulator 1. The threshold 
apparatus (THRA) device defines the GR threshold. 

 

 
Figure 1.  GD structure. 

     As we can see from Fig. 1, there are two band-
pass filters, i.e. the linear systems, at the GR input, 
namely, the PF and AF. We assume for simplicity 
that these two filters or linear systems have the same 
amplitude-frequency characteristics or impulse res-
ponses. The AF central frequency is detuned relative 
to the PF central frequency. There is a need to note 
the PF bandwidth is matched with the bandwidth of 
the radio channel or target return signal bandwidth. 
     If the detuning value between the PF and AF ce-
ntral frequencies is more than 4 or 5 times the target 
return signal bandwidth to be detected, i.e. 4 ~ 5 sf , 
where sf is the target return signal bandwidth, we 
can believe that the processes at the PF and AF out-
puts are uncorrelated because the coefficient of cor-
relation between them is negligible (not more than 
0.05). This fact was confirmed experimentally in 
[33] and [34]. Thus, the target return signal plus noi-
se can be appeared at the GR PF output and the noi-
se only is appeared at the GR AF output. 
    The stochastic processes at the AF and PF outputs 
present the input stochastic samples from two indep-
endent frequency-time regions. If the discrete-time 
noise ][kwi at the PF and AF inputs is Gaussian, the 

discrete-time noise ][ki at the PF output is Gaussi-
an and the reference discrete-time noise ][ki at the 
AF output is Gaussian, too, owing to the fact that 
the PF and AF are the linear systems and we believe 
that these linear systems do not change the statistical 
parameters of the input process. Thus, the AF can be 
considered as a generator of the reference noise with 
a priori information a “no” target return signal (the 
reference noise sample) [17, Chapter 5].  The noise 
at the PF and AF outputs can be presented in the fol-
lowing form: 
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where ][mgPF and ][mgAF are the impulse responses 
of the PF and AF, respectively.  
     In a general, under practical implementation of 
any detector in radar system with sensor array, the 
bandwidth of the spectrum to be sensed is defined. 
Thus, the AF bandwidth and central frequency can 
be assigned, too (the AF bandwidth is can not be us-
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ed by the target return signal because it is out of its 
spectrum). The case when there are interfering sig-
nals within the AF bandwidth, the action of this in-
terference on the GR detection performance, and the 
case of non-ideal condition when the noise at the PF 
and AF outputs is not the same by statistical param-
eters are discussed in [28]. 
     Under the hypothesis 1H (“a yes” target return sig-
nal), the GR CD generates the signal component 

][][ ksks i
ms
i caused by interaction between the model 

signal ][ksms
i ,the MSG output, and the incoming tar-

get return signal ][ksi , and the noise component 
][][ kks i

ms
i  caused by interaction between the model 

signal ][ksms
i and the noise ][ki at the PF output. GR 

ED generates the signal energy ][2 ksi and the random 
component ][][ kks ii  caused by interaction between 
the target return signal ][ksi and the noise ][ki at the 
PF output. The main purpose of the GR CC is to ca-
ncel completely in the statistical sense the GR CD 
noise component ][][ kks i

ms
i  and the GR ED random 

component ][][ kks ii  based on the same nature of the 
noise ][ki .The relation between the target return si-
gnal to be detected ][ksi  and the model signal ][ksms

i  
is defined as: 

                                ,   ][ ][ ksks i
ms
i                          (2) 

where is the coefficient of proportionality. 
     The main functioning condition under the GR 
employment in any signal processing system includ-
ing the radar sensor one is the equality between par-
ameters of the model signal ][ksms

i and the incoming 
target return signal ][ksi , for example, by amplitude. 
Under this condition it is possible to cancel comple-
tely in the statistical sense the noise component 

][][ kks i
ms
i  of the GR CD and the random compon-

ent ][][ kks ii  of the GR ED. Satisfying the GR main 
functioning condition given by (2), ][][ ksks i

ms
i  , 

1 ,we are able to detect the target return signal 
with the high probability of detection at the low 
SNR and define the target return signal parameters 
with high accuracy. Practical realization of this con-
dition requires increasing in the complexity of GR 
structure and, consequently, leads us to increasing in 
computation cost. For example, there is a need to 
employ the amplitude tracking system or to use the 
off-line data samples processing. Under the hypoth-
esis 0H (“a no” target return signal), satisfying the 

main GR functioning condition ][][ ksks i
ms
i  we ob-

tain only the background noise ][][ 22 kk ii   at the 
GR output. 
     Under practical implementation, the real structu-
re of GR depends on specificity of signal processing 
systems and their applications, for example, the ra-
dar sensors systems, adaptive communications syst-
ems, cognitive radio systems, satellite communicati-
on systems, mobile communication systems and so 
on. In the present paper, the GR circuitry (Fig. 1) is 
demonstrated with the purpose to explain the main 
operational principles. Because of this, the GR flow-
chart presented in the paper should be considered 
under this viewpoint. Satisfying the GR main functi-
oning condition ][][ ksks i

m
i  , the ideal case, for ra-

dar sensor applications we are able to detect the tar-
get return signal with high probability of detection 
and define accurately its parameters. 
     In the present paper, we discuss the GR implem-
entation in radar sensor array systems. Since the 
presented GR test statistics is defined by the signal 
energy and noise power, see Eq.(3), the equality bet-
ween the model signal ][ks m

i and the target return si-
gnal to be detected ][ksi , in particular by amplitude, 
is required that leads us to high circuitry complexity 
in practice. For example, there is a need to employ 
the amplitude tracking system or off-line data samp-
le processing. Detailed discussion about the main 
GR functioning principles if there is no a priori info-
rmation about the target return signal and there is 
uncertainty with respect to the target return signal 
parameters, i.e., the target return signal parameters 
are random, can be found in [14] and [16, Chapter 6, 
pp.611–621 and Chapter 7, pp. 631–695]. 
     The complete matching between the model sig-
nal ][ks ms

i and the incoming target return signal ][ksi  
for example, by amplitude is a very hard problem in 
practice because the incoming target return signal 

][ksi depends on both the fading and the transmitted 
signal and it is impractical to estimate the fading ga-
in at the low SNR. This matching is possible in the 
ideal case only. The GD detection performance will 
be deteriorated under mismatching in parameters be-
tween the model signal ][ks ms

i and the incoming tar-
get return signal ][ksi and the impact of this problem 
is discussed in [35], where a complete analysis abo-
ut the violation of the main GR functioning require-
ments is presented. The GR decision statistics requ-
ires an estimation of the noise variance 2

 using the 
reference noise ][ki at the AF output. 
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Under the hypothesis 1H ,the signal at the PF out-
put, see Fig. 1, can be defined as 

                         ][][][ kkskx iii   ,                     (3) 

where ][ki is the noise at the PF output and 

                          ][][][ kskhks ii  ,                         (4) 

where ][khi are the channel coefficients. Under the 
hypothesis 0H and for all i and k, the process ][kxi       

][ki at the PF output is subjected to the complex 
Gaussian distribution and can be considered as the 
independent and identically distributed (i.i.d.) pro-
cess. 
     In ideal case, we can think that the signal at the 
AF output is the reference noise ][ki with the same 
statistical parameters as the noise ][ki . In practice, 
there is a difference between the statistical parame-
ters of the noise ][ki and ][ki . How this difference 
impacts on the GR detection performance is discus-
sed in detail in [16, Chapter 7, pp. 631-695]. 

The decision statistics at the GR output present-
ed in [14] and [16, Chapter 3] is extended for the ca-
se of antenna array when an adoption of multiple 
antennas and antenna arrays is effective to mitigate 
the negative attenuation and fading effects. The GR 
decision statistics can be presented in the following 
form: 
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where 
                          )1(),...,0(  NxxX                     (6) 

is the vector of the random process at the PF output 
and GRTHR is the GR detection threshold. 
     Under the hypotheses 1H and 0H and when the am-
plitude of the incoming target return signal is equal 
to the amplitude of the model signal, ][][ ksks i

ms
i   

the GR decision statistics )(XGDT takes the following 
form, respectively: 
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     In (7) the term s
N
k

M
i i Eks   

1
0 1

2 ][ corresponds 
to the average target return signal energy, and the 
term    

 



 
 1

0 1
21

0 1
2 ][][ N

k
M
i i

N
k

M
i i kk  is the backgr-

ound noise at the GR output. The GR output backgr-
ound noise is a difference between the noise power 
at the PF and AF outputs. Practical implementation 
of the GR decision statistics requires an estimation 
of the noise variance 2

 using the reference noise 
][ki at the AF output. 

3 Problem Statement 

3.1 Signal model 
Assume that we have an array with P sensors with 
an array response vector )(a , where denotes the 
azimuth. The array and all the sources are in the sa-
me plane. We assume a narrowband model for all 
signals and all the signals are defined within the li-
mits of baseband. The signal received by the radar 
sensor array from a single source is modelled as 

                  Nkkkk ,,1  ,   ξSX                 (8) 

where N is the sample size and ],,[
1 Pkkk xx X is 

the array output at sample reading k; kS is the signal 
received at the radar sensor array elements assumed 
to be complex Gaussian with zero mean and covari-
ance SSE R , where SE is the total signal energy and 

SR is defined below in (10); kξ is the complex Gau-
ssian noise with zero mean and covariance R . The 
signal and noise are uncorrelated from sample to sa-
mple. 
     The correlation matrix of observation vector kX is 
given by 
             RRXXR  ),(, }{1 SS

H
kk EE ,      (9) 

where H)( denotes the complex conjugate transpo-
se and the signal covariance matrix is given by 

          







 dE H
S )()(),;(),( aaR ,      (10) 

where is the source azimuth angle and  is the so-
urce angular spread with  20  ; )(a is the arr-
ay manifold at the angle ; ),( SR is the normaliz-
ed so that 
                          PTr S )],([ R ;                      (11) 

][Tr denotes the trace of a matrix, ),;( E is the 
spatial energy distribution of source at the azimuth  
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 . More specifically, we may assume that 

                      ),(),;(   EE                 (12) 
with                                                                                

                          1),;( 



 dE .                   (13) 

     The shape of the energy distribution function de-
pends on the angular spread parameter  . If 0 , 

),;( E is the unit pulse. As  is increased, the en-
ergy distribution function becomes wider. 
     For simplicity, we consider the uniformly distrib-
uted source model, i.e. 
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One can also consider a Gaussian type distribution 
such that 
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3.2 Signal subspace 
By performing an eigen-decomposition of the mat-
rix ),( SR , we get 
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where 
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Here, rΛ consists of the Pr 1 largest eigenvalues 
of ),( SR in descending order and ,,( 1 vV r    

), rv contains the corresponding orthonormal ei-
genvectors. If ),( SR is the low-rank matrix with 
rank r, then 

                      H
rrrS VΛVR   ),(  .                  (18) 

     More generally, we will assume that ),( SR can 
be approximated by a rank r matrix. The number of 
dominant eigenvalues may be defined as the minim-
um number of eigenvalues whose sum exceeded P , 

where 10  is close to unity, for example,        
95.0 . Thus, 

                       H
rrrS VΛVR   ),(   .                   (19) 

     The range space of rV is called the signal subspa-
ce and its orthogonal complement, called the noise 
subspace, is spanned by V .The effective rank of su-
bspace is the number of dominant eigenvalues. The 
case where 0 corresponds to the point source 
where the rank 1r , and the signal covariance be-
comes 
                       )()()0,(  H

S aaR  .                  (20) 

3.3 Detection problem 
The detection problem of a random Gaussian signal 
in the presence of noise and interference can be pre-
sented in the following form: 
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Covariance matrix of array output under the hypoth-
eses 0H and 1H is RR 0 and 1R given by (9)–(14) 
respectively. 
     Let us assume the interference has characteristics 
similar to that of the noise and can be absorbed into 
the noise vector kξ . We assume that the noise at the 
GR PF output can be presented as IR 2

  , where 
2
 is the noise variance and the noise power under 

the hypotheses 0H and 1H is not differed. If the noise 

is spatially coloured or   RR 2  where R is the 
known positive definite Hermitian matrix, the detec-
tion is preceded by a prewhitening filter 5.0

R .  
     We have the binary hypotheses with kX being a 
whitened data vector. We assume that the noise vec-
tors },,{ 1 Nξξ  are i.i.d. By grouping all the N snap-
shots of observation vectors into an observation ma-
trix 
                               ],,[ 1 NxxX  ,                    (22) 
we have 
                                    ΞSX  ,                       (23) 

where the signal matrix 

                                 ],,[ 1 NssS                       (24) 
and the noise matrix 

                                ],,[ 1 NξξΞ  .                   (25) 

     The detection statistics depends on a set of para-
meters 

WSEAS TRANSACTIONS on COMMUNICATIONS Vyacheslav Tuzlukov

E-ISSN: 2224-2864 191 Volume 14, 2015



                             },,,{ 2
nSEp  .                  (26) 

If all parameters are known, this is a standard detec-
tion problem whose optimal solution is the GR like-
lihood ratio [14]–[16]. If the parameters are unkn-
own, we use the GLRT GR involving the replacem-
ent of unknown parameters by their maximum like-
lihood estimates under each hypothesis. 
     Some specific versions of GR can be constructed 
depending on what parameters are known or unkn-
own. We consider the GLRT GR in which the con-
ventional beamformers are the counterparts with the 
same set of unknown parameters so that a fair com-
parison between the GLRT GR and conventional 
beamformer can be made. 

We consider the following types:  

 the GR beamformer type 1 – all the signal 
parameters are known and this GR is used 
as a reference; 

 the GLRT GR beamformer type 2 – the pa-
rameters  ,  are unknown; 

 the GLRT GR beamformer type 3 – the pa-
rameters  ,,, 2

nSE are unknown; 
 the GR beamformer type 4 – the parameter 

 is unknown; 
 the GR beamformer type 5 – the parameters 

2,, nS σE are unknown. 

     We carry out a comparative analysis between the 
detectors of types 1, 2, 3, 4, and 5 with the correspo-
nding conventional beamformer. The conventional 
beamformer is designed assuming the point sources 
(zero angular spread, i.e. 0 ). 

4 GR: Specific Modifications 
According to the generalized approach to signal pro-
cessing in noise [14]–[16], the detection problem for 
the GR can be presented in the following form: 

            








, ,,1  ,   

,,1         ,   

1

0

Nk
Nk

kk

k
k





H
H
ξS

ξ
X       (27) 

where the elements of the vectors kξ and kη , the re-
ference noise at the GR AF output (see Fig. 1), are 
given by (1). 
     Assume, the target return signals under the hypo-
theses 0H and 1H are the complex Gaussian with zero 
mean and covariance 0R and 1R , respectively, and 
the probability density functions (pdfs) for the N ob-
servations are given by 

]}[{][ 1
000 exp ||);( QRRX   TrNf NPH  

(28) 
and 

]}[{][ 1
111 exp ||);( QRRX   TrNf NPH . 

(29) 
Here, 

        11 ]][[]][[ 1111

1

H
N

k

H
kk NN

HHHH XXXXQ  


  (30) 

and 

      H
N

k

H
kk NN

]][[]][[ 0000
11

1

HHHH XXXXQ  


  (31)  

are the sample covariance matrices under the hypo-
theses 1H and 0H ,respectively. We emphasize that we 
do not impose the constraint that PN  , i.e. detecti-
on can be carried out based on a single measurement 

)1( N or multiple measurements )1( N .   
     Based on the Neyman-Pearson theorem, when all 
the parameters are known, the GR test is the logar-
ithm of the likelihood function ratio under the hypo-
theses 1H and 0H , i.e. 

 1][ 1
1

1
02 )( HL XRRSX   HTr  

H]][][[ 11 1
1

1
0

HH XRRX    

                     ln ||
||1

1
1

0 1
0][ R

RQRR N   .          (32) 

     Next, we consider the case where some paramet-
ers are unknown. The unknown parameters under 
the hypotheses 0H and 1H are denoted by 0p and 1p , 
respectively. In this case, the detection statistic is gi-
ven by the GLRT [36]  

               
),(max
),(max

)ˆ,ˆ,(
0

1
10

0

1

H
H

X
X

X
f
f

ppl
p

p               (33) 

or its logarithm 

 1][ )ˆ()ˆ(2 )ˆ,ˆ,( 1
1

10
1

010
HL XRRSX ppTrpp H    

Hpp ]][][[ 11 )ˆ()ˆ( 1
1

10
1

0
HH XRRX    

        ln)ˆ()ˆ( |)ˆ(|
|)ˆ(|

1
1

10
1

0 11
00][ p

pNpp R
RQRR   ,     (34) 

where 0p̂ and 1p̂ are the parameters maximizing the 
likelihood function under the hypotheses 0H and 1H , 
respectively. 

4.1 Subspace GD beamformer – known  
      parameters 
Ignoring the constant term ||

||
1

0ln R
RN in (32), we can 

write 
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),( pXL  

 QBBXBBXXBBS  HHHHHTr ][][2 111 HHH  , 
(35) 

where 
                       )()( 1

1
1

0 ppH   RRBB               (36) 

and p is defined in (26). The above decomposition 
of HBB is possible because 1

1
1

0
  RR is a non-nega-

tive definite matrix. In general, B is a rP  matrix, 
where Pr 1 . The rank of B depends on rank of 
the signal covariance matrix SR . 
     Utilizing (14) and (19), we obtain 

                       01 RVΛVR  H
rrrSE .                (37) 

Employing the matrix inversion lemma, we obtain 
1

0
11

0
1

0
1

0
1

1 ][     RVVRVΛVRRR H
rr

H
rrSr E . 

(38) 
     Hence, we can rewrite (36) as follows: 

    1
0

11
0

1
0 ][     RVVRVΛVRBB H

rr
H
rrSr

H E   (39) 

and then, the subspace matrix is a rP  matrix 

           ],,[
  

11
0

1
0

rH
SE

bb
VRVΛ

VRB 







 .    (40) 

      If the signal subspace is indeed low rank with 
rank r, the approximation sign is replaced by an eq-
uality sign. This leads to an interpretation of the GR 
as a bank of beamformers. We emphasize, this sub-
space beamformer is an approximation to the true 
GR. 
     In our case, the noise covariance matrix R    

I2
 that leads us to a simpler form 

                    

ΛVV

VB

 
4

4 4
4

S
n

r
H
r

n

r

E






 .             (41) 

     We denote Z as an output matrix of beamformers 

                      ],,[ 1 N
H zzXBZ  ,                (42) 

where k
H

k xBz  .We will refer to this as a subspace 
beamformer to distinguish it from the conventional 
beamformer, where b is a 1P vector. The GR out-
put statistics is given by 

}{2),( QYYZSX  HHTrpL  

         



N

k

H
kk

H
kk

H
kk

1

2||]][[|| 002 HH xxzzsz .     (43) 

 

4.2 GLRT GR – unknown parameter  
      },,,{ 2

nSEp   

4.2.1 The parameter },{ p  
In this case, the unknown parameter },{ p needs 
to be estimated. Note that the likelihood function of 
the GR background noise under the hypothesis 0H is 
independent of the signal S and its parameters p, and 
thus, it needs to be estimated only under the hypoth-
esis 1H . The detection statistics are constructed as 
follows by maximizing argument p: 

 1)]ˆ([2 )ˆ,( 1
1

1
1

01
HL XRRSX pTrp H    

Hp ])][ˆ(][[ 11
1

1
1

1
0

HH XRRX    

               ln)]ˆ([ |)ˆ(|
||

1
1

1
1

0 11
0
pNp R

RQRR   ,         (44) 

where 
            ),(maxargˆ 1

),0(),5.0,5.0(
1

0

pp XL
 

 .         (45) 

     The estimation is done by a numerical maximiza-
tion over the range   or  5.05.0   
(for a linear array), and 00   , 0 is the predete-
rmined angular spread range. 
     The maximization is carried out by the following 
steps: 

 Step1: We divide a two-dimensional search 
range },{  into small grids. The size of the 
grid },{  is a fraction of an array beam 
width.We choose MB1  and  2     
MB where 1,0 21   . We find that ,1    

5.02  produce quite reliable results.  
 Step 2: For every pair },{ ii  , ),( iiS R is 

constructed based on (15). 
 Step 3: The GR output statistic ,(;[ iXL    

)]i is evaluated. 
 Step 4: This process is repeated, and the la-

rgest value of )],(;[ ii XL is selected. 

4.2.2 The parameter }{ 2,,, nSEp    
In this case, all the parameters are unknown. The 
maximum likelihood estimation procedure requires 
a nonlinear optimization. The GR searches the glo-
bal maximum of likelihood function over the unkn-
own parametric sets. The maximization can be car-
ried out as follows: 

)( 1
222 ˆ,ˆ,ˆ,ˆˆ, pEl nSnS  X  

)( 1
222 ˆ,ˆ,ˆ,ˆˆ,max

1

pEl nSnSp
  X  
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          )( 1
222

),0(
,ˆ,ˆ,,maxmax

01

pEl nSnSp







 X .     (46) 

     We first maximize the likelihood function over 
)( 22 , nnSE   , assuming that },{1 p is known. 

We maximize the result over },{  . The derivation 

of the maximum likelihood estimators of )( 2, nSE  is 
provided at the fixed 1p .  
     The GLRT GR likelihood function takes the foll-
owing form: 

N
SnS

nSnS pE
pEl

||
)(

)( ˆˆ
1,ˆ,ˆ,ˆˆ,

1
21

222

IR
X








      

           
PN

SnS pETrTr


















Q
IRQ )])( ˆˆ[(][ 1

2 .      (45) 

     Taking the logarithm, we obtain the following 
statistics at the GR output  

)( 1
222 ,ˆ,ˆ,ˆˆ, pE nSnS  XL   



















Q
IRQ )])ˆ( ˆˆ[(][ln 1

2 pETrTrPN SnS  

                   || )ˆ(ˆˆln 1
2 IR   pEN SnS  ,            (46) 

)( 1
222

0,5.05.01 ,ˆ,ˆ,ˆˆ,maxargˆ
0

pEp nSnS 





 XL . 

(47) 

     In summary, the maximization is carried out as 
follows. 

 Step 1: Follow Steps 1 and 2 in Subsection 
4.2.1. 

 Step 2: For each pair of },{ ii  , a one-dime-
nsional search over  is carried out to select 

the maximal value of )( 2},{, 
nSii E XL . 

The search can be implemented through a 
binary search or an exhaustive search and 

0p is a predetermined search range. 
 Step 3: This process is repeated for all the 

values of },{ ii  , and the largest value of 
)( 2},{, 

nSii E XL is selected. 

4.3 GR beamformer– unknown parameter  
      }{ 2,, nSEp   

4.3.1 The parameter }{p   
GR beamformer searches for the maximum energy 
by sweeping over all possible directions. This is the 
optimal solution (maximum likelihood) for point so-

urces. If the source is distributed, only a fraction of 
the energy is captured by the beamformer. Degrada-
tion in performance will occur. 
     For a linear array, the beamformer searches over 

 5.05.0  . The GR output statistics takes 
the following form 

)(XL  

2||][|| 111)ˆ(2 QBBXBBXXBBS  HHHHH HHH , 
(48) 

where 
                 2

5.05.0
|||| )ˆ(maxargˆ XB 



H


           (49) 

and )(a is the steering vector pointing to direction 
 . The implementation of this GR beamformer is 
quite straightforward. The GR beamformer B is a 
normalized steering vector. The maximal value of 
GR beamformer output statistic is chosen by sweep-
ing the GR beamformer from 5.0 to 5.0 . 

4.3.2 The parameter }{ 2,, nSEp    
GR beamformer searches the maximum energy out-
put over the range from 5.0 to 5.0 . The signal 
energy is divided by an estimate of the GR backgr-
ound noise variance that is calculated by projecting 
GR array output on the subspace orthogonal to the 
rank 1 steering vector. To exclude the signal power 
that “leaks” through the beams adjacent to the main 
beam, we estimate the GR background noise power 
from beams that are further away from the main be-
am. 
     We can choose to exclude the MB/0 beams ad-
jacent to the main beam, where 0 is a predetermin-
ed angular spread range. This seemingly ad hoc ap-
proach is the modified maximum likelihood estima-
te of the GR background noise variance. It is well 
known that the GR background noise variance esti-
mate is given by [17], [19]  

                     122 )( ||||   AA QP rPg ,              (50) 

where 
AP is the projection on the signal subspace A 

and Ar is the signal subspace rank. 
     The accuracy of the GR background noise estim-
ate will degrade when a smaller subspace is used 
due to a leakage of the signal power onto the noise 
subspace. We construct a subspace AC  so that the 
signal power is excluded from the estimation i.e. the 
subspace 

       )}5.0(,),5.0({),( 000   aaC   (51) 

is generated.The power projected onto the null space 
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of ),( 0C is considered to be the GR background 
noise power, i.e. 

           1
),(0

2 )(),(ˆ }{
0

  BB QP rPTrg  ;      (52) 

                      ),(),( 00  BB PIP  ;                   (53) 

Cr is the rank of C. 
     The GR output statistic possessing CFAR prope-
rties is given by 

)(XL  

),(ˆ
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)5.0,5.0(

}{ 111
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

 g

HHTr QPXPXXPS aaa 




HHH
 

(54) 
where )(aP is the projection matrix on )(a . The im-
plementation of this GR type involves three steps.  

 Step 1: For every angle , we construct a 
projection matrix )(aP . The subspace 

),( 0C and null projection matrix ),( 0BP  
are constructed accordingly. 

 Step 2: The GR output is evaluated based on 
(52) for every angle . 

 Step 3: The largest value of )( },{,  iiXL  
is selected. 

5 Performance Analysis: Known 
    Parameters 

5.1 SNR gain versus angular spread 
SNR gain is defined as the ratio of the SNR at the ra-
dar sensor array GR output to the SNR at the radar 
sensor array GR input. For point sources, SNR gain 
depends on the number of sensors. For a linear array 
withP sensors SNR gain is equal toP.We derive SNR 
gain for the subspace beamformers. The subspace 
GR beamformer output takes the following form: 

H
k

H
k

H
k

H
kk

HH
k ηBBηxBBxxBBSz  )( 1112 HHH . 

(55) 

     Let the GR output SNR can be presented as the 
ratio between the average signal and average back-
ground noise powers at the beamformer output 
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     The GR input SNR is defined as 2/ nSE  .The SNR 

gain is given by 
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}{out
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H
S

H
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in
GR Tr

ETr
SNR
SNR

  .             (57) 

     We are interested in how the SNR gain of the su-
bspace GR beamformer is varied with the signal an-
gular spread. Note that 

144 ][ )(425.0     SS
H E RIIBB  

H
rr

H
rrSr E DVVVΛIIV   }][{ 144 425.0   , 

(58) 

where 
                144 ][425.0   rSnn E ΛIID  .       (59) 

Then, the SNR gain is defined as  
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(60) 
     For simplicity, we assume that the dominant eig-
envalues are approximately equal, i.e.  irPi ,/     

r,,1 .This approximation is certainly not very ac-
curate, but it reveals some insights of the SNR gain 
behaviour. Therefore, we obtain 

                                
r
P

SNR
SNR

in
GR


out
GR  .                      (61) 

     This result shows that the SNR gain for the sub-
space GR beamformer not only depends on the nu-
mber of sensors P but on source angular spread  
through the subspace rank r as well. It is a monoto-
ne decreasing function of r. The following can be 
concluded as two special cases: 

1) in the point source case 0 or H
S aaR  , 

we get the SNR gain equal to P; 
2) in the case 180 or IR S ,we get the un-

it SNR gain. 

5.2 Receiver operating characteristics (ROC) 
We derive the analytical expression for pdfs under 
two hypotheses 0H and 1H . By )(2 zM  and )(zfM  we 
denote the central Chi-squared distribution with M 
degrees of freedom and the pdf of the central Chi-
squared distribution with M degrees of freedom, re-
spectively. Log-likelihood ratios at the hypotheses 

0H and 1H  can be represented by sum of quadratic 
forms in complex Gaussian random variables        

00
)( 0, HHHL XBBXQBBX HHH   
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where j are nonzero eigenvalues of the matrix HBB  
and jv are the associated eigenvectors. 
     Thus, we can write 
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where jikz are independent zero mean and unit varia-
nce complex Gaussian random variables and ,{ ji      

},,1 rj  are the r real nonzero weights. More 
precisely, 
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where j are the eigenvalues of SR . 
     As an extension of the results in [37] and [38] 
from real to complex numbers, the quadratic form 

)( , iHL X is distributed approximately as the scaled 
Chi-squared random variable, or 2~)( ,

iMii HL X , 
where the scaling factor i and the degrees of freed-
om iM are given  by 

        








 

 

 

  











 1

0 1

2

2
1

0 1
1

0 1

1

0 1

2

2   ,  

i

r

j
ij

i

r

j
ij

i

i

r

j
ij

i

r

j
ij

i NM







 .     (66) 

     Plugging (65) into (66), we obtain 
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     Utilizing the Jacobean transformation, we can 
show that the pdf of detection statistics )( , iHL X is 
defined by )(| 11| 

iiMi zf
i

 . Note that the absolute 
sign can be ignored because i is a positive number. 
This leads to an approximation of the probability of 
false alarm 

                           
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and the probability of detection 
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where the pdf is given by 
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     Let 
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u
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is the probability distribution function of Chi-squar-
ed random variable with M degrees of freedom and 

)(1 uFM
 is the inverse probability distribution functi-

on. 
     The probability of false alarm AFP and the proba-
bility of detection DP of quadratic form )( , iHL X can 
be written as 
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     For a fixed level of false alarm rate, we have a 
closed-form expression of the probability of detecti-
on 
               ][ 1

1
0 )1(1

01
 FAMMD PFFP    .        (74) 

     Computer simulation demonstrates that the anal-
ytical result (the lines) is matched with the Monte 
Carlo simulation result (the markers) quite well for 
different number of measurements, signal angular 
spreads, and false alarm rates. The asymptotic per-
formance of the probability of detection DP as N is 
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sufficiently large can also be obtained in that the 
Chi-squared pdf with M degrees of freedom tends to 
become a Gaussian normal pdf with mean M and 
variance M2 . If M is sufficiently great in magnitude 

                 ][ 5.0)2()(  MMuuFM ,            (75) 
where 
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We obtain 
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5.3 Required SNR (RSNR) 
The ROC describes behaviour of the probability of 
detection DP as a function of the SNR that changes 
the given probability of false alarm FAP . To compare 
different GR performance it is sometimes conveni-
ent to define a scalar performance measure, rather 
than to use the entire ROC curve. 
     We define the RSNR as the SNR needed to produ-
ce the probability of target detection at a given false 
alarm rate. Another quantity of interest is the GR 
output SNR required to achieve the same target pro-
bability of detection DP for the fixed probability of 
false alarm FAP . From (67) and (68) we obtain 
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     Simplification leads us to 
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     The general behaviour of the quantity RSNR de-
pends on eigenvalues, which has certain distributi-
ons [38]. Equation (75) is quite complicated. To ga-
in some insights of this quantity, we look at the case 
where all the principal eigenvalues of SR are appro-
ximately equal, i.e. rirPi ,,1,/   . This ap-
proximation is certainly not accurate but serves for 
simplicity purposes to illustrate the performance of 
RSNR as the degrees of freedom changes. A more 
accurate result may be obtained by a numerical app- 

 roach. With this assumption, we have ,20 NrM         
NrM 21  . Let Nrv 2 denotes the degrees of free-

dom, and after some transformations, we get 
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and the quantity RSNR is given as 
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     The quantity RSNR that is a function of ,,( DPv     
)FAP can be easily evaluated by numerical method. 

For the fixed probability of false alarm FAP , Fig.2 
depicts the RSNR for different values of degrees of 
freedom v and the probability of detection DP . To el-
iminate the effect of size of the linear array, we mul-
tiply the RSNR by array size P. It is easy to see that 
the normalized RSNR, e.g. RSNRP is a quantity 
that depends on the degrees of freedom ,v the proba-
bility of detection DP , and the probability of false al-
arm FAP . This observation indicates that although 
the increase of the angular spread causes a reduction 
of the SNR gain, it changes the distribution of the 
detection statistics by increasing its degrees of free-
dom. 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
Figure 2. Normalized RSNR versus degrees of freedom 

]50,1[v at various DP ; 310FAP . 

     Figure 2 also explains the different behaviour of 
detection performance presented in Figs. 3 and 4. 
GR operating in a meaningful detection range requi-
res a great in magnitude the target probability of de-
tection DP . In this case, the RSNR performance imp-
roves as the degrees of freedom increase to a certain 
point, and then, it starts dropping. Large N or large 

WSEAS TRANSACTIONS on COMMUNICATIONS Vyacheslav Tuzlukov

E-ISSN: 2224-2864 197 Volume 14, 2015



angular spread gives rise to an asymptotic performa-
nce of the RSNR. As the degrees of freedom become 
great in magnitude, either due to a large number of 
measurements or large angular spread, the detection 
performance degrades, but the degradation is not si-
gnificant. 

6 Numerical Results 
We present computer simulations to illustrate the 
analytical performance results discussed above. We 
consider a uniform linear array with P sensors and 
half wavelength spacing. The array manifold is giv-
en by 

          
T

djdj P
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where is the target return signal wavelength, d   
5.0 is the element spacing, and is the azimuth an-

gle. We find that is convenient to normalize the ang-
ular spread by the array beam width [39].We assign 

20P . Thus, the beam width of this linear array is 
equal to 03.6 . We assume that the source is located 
at 20  relative to the broadside of the array. Throug-
hout the simulation, 310FAP and .8.0DP We are 
interested in the case if there are a few snapshots av-
ailable for detection. In the simulation, we investig-
ate the cases where 1N and 20N , respectively. 
More detailed discussion about detection by multip-
le measurements can be found in [40]. 

6.1 Parameters are known – ROC, RSNR,   
      and SNR gain 
 Figure 3 depicts the probability of detection DP for 
different values of angular spreads  , the probabili-
ty of false alarm FAP , and number of measurements 
N. We can see both the analytical results using the 
formulas presented earlier and the Monte Carlo trial 
results. We note that there exists a very good match 
between two sets of results. We notice that the beha-
viour of the probability of detection DP curves is qui-
te different when multiple measurements are used in 
comparison with that of the single measurement de-
tection. 
     For a single measurement, 1N  there is a cross-
over point of ROC curves for different angular spre-
ads. We observe that as the angular spread increases 
from 0 to 30 , the detection performance improves 
up to a point, and then, it starts decreasing. If multi-
ple measurements are used, the detection performa-
nce drops as the angular spread increases. This phe-
nomenon is due to the change of the pdf shape, 

whose degrees of freedom are affected by both the 
angular spread and the number of measurements.Al-
ternative way to look this phenomenon is to study 
the RSNR versus the angular spread. Figure 3 demo-
nstrates a superiority of GLRT GR employment in 
comparison with the conventional beamformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. DP versus SNR; all parameters are known; the 
number of sensors 20P . 

     Figure 4 shows the behaviour of the SNR gain  as 
a function of the angular spread. The SNR gain plot 
decreases monotonically from 17 to 5 dB as the ang-
ular spread increases from 0  to .360  GR  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. SNR gain versus normalized angular spread for 
an array with 20p sensors. 

output RSNR shows a performance improvement ca-
used by the GR output statistics pdf change as the 
angular spread increases. As the angular spread and 
the effective rank of the GR subspace increases, the 
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detection statistics pdf becomes a Gaussian distribu-
tion. Once the pdf is sufficiently close to Gaussian 
one, no more improvement occurs. The RSNR plot, 
which is the difference of these two plots, is decrea-
sed up to a point and increased afterwards. 

6.2 Detection with angular spread mismatch 
We examine the effects of angular spread mismatch 
on GR performance. In Fig. 5, the upper plot depicts 
the SNR gain loss factor defined as the ratio of the 
SNR gain for a subspace GR beamformer using an 
incorrect angular spread to that of a beamformer that 
uses the correct angular spread of 20 . This is due to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. RSNR and SNR gain loss factor versus assumed 
angular spread when there is an angular mismatch; the 
number of sensors ;20P the angular spread 20 . 

the fact that the GR background noise power projec-
ted on the detector subspace is proportional to the 
effective rank of subspace that increases with the as-
sumed angular spread. The lower plot depicts RSNR 
loss factor as the assumed angular spread changes. 
GR with the correct angular spread has the best per-
formance. The conventional beamformer detector 
assumed a zero angular spread and experienced a 
loss of approximately 7 dB in this case.  

6.3 Detection performance versus angular  
      spread 
At the fixed probability of false alarm 310FAP we 
study the probability of detection DP . GLRT GR de-
tector searches over ranges of direction and angul-

ar spread  the maximal value of likelihood functi-

on. Searching is carried out over the range  90     
90 and 00   , where 0 is set to be 60 .     

     Figures 6 and 7 depict the probability of detecti-
on DP and RSNR versus angular spread for different 
detectors with single measurement, i.e. 1N . The 
results show that when the angular spread is small 
there is a little difference between the GLRT GR 
and GR beamformer because the source is appeared 
to be a point-like source. The main beam of the GR 
beamformer is able to capture all the energy coming 
fro the source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. DP versus normalized angular spread; the numb-

er of measurement is 310,dB2,1  FAPSNRN . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. RSNR versus normalized angular spread; the 
number of measurement is 310,8.0,1  FAD PPN . 
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     Actually, the GLRT GR has slightly worse perfo-
rmance than that of the GR beamformer due to the 
excessive search which results in an increase of de-
tection threshold. As the angular spread gets larger, 
the performance of both GLRT GR and GR beam-
ormer degrades. The degradation of GR beamformer  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. DP versus normalized angular spread; the numb-

er of measurements is 310,dB8,20  FAPSNRN . 

is much more significant than that of GLRT GR. In 
the case of large angular spread the GLRT GR de-
monstrates the better probability of detection DP in 
comparison with the GR beamformer. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. RSNR versus normalized angular spread; the 
number of measurements is 310,8.0,20  FAD PPN . 

     We plot the results in the case of known paramet-
ers to see how much the detection performance deg-
rades than occurs for other suboptimal detectors. We 
study the GR performance when multiple measure-

ments 20N  are used. We compare the probability 
of detection DP and RSNR when the parameters are 
unknown (see subsections 4.2 and 4.3) at 20N da-
ta snapshots. 
     We see that the detection performance is appear-
ed to be quite different than at 1N . If 20N , as 
the angular spread increases, the detection perform-
ance degrades monotonically. This observation sug-
gests that large degrees of freedom caused either by 
multiple measurements or by a large angular spread, 
bring down the detection performance. The GR bea-
mformer detection performance degrades faster in 
comparison with GLRT GR one. Simulation results 
in Figs. 8 and 9 also demonstrate the better GLRT 
GR and GR beamformer performance in comparison 
with conventional beamformers as the angular spre-
ad increases 

7 Conclusions 
In this paper, we studied the GLRT GR and GR bea-
mformer for spatially distributed signal sources The 
analysis and computer simulation demonstrate that 
the GR performance is better in comparison with co-
nventional beamformer one that are designed for po-
int sources. The performance difference increases as 
angular spread increases. 
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